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SEND, W.

The Mean Power of Forces and Moments in Unsteady Aerodynamics

Die Bilanz fiir die mechanische Energie dient als Ausgangspunkt fiir eine einheitliche und konsistente Darstellung der beiden
grundlegenden und der instationdiren Aerodynamik innewohnenden Mechanismen Vortrieb und Flattern. Beide Erscheinungen
héingen wechselseitig voneinander ab und sind gegeneinander austauschbar allein durch die Verdnderung der reduzierten Frequenz
als der beherrschenden Grifie beziiglich instationdrer Effekte.

The balance of mechanical energy serves as the starting point for a unified and consistent approach to the two basic and
inherent mechanisms in unsteady aerodynamics, propulsion and flutter. Both phenomena are mutually dependent and
interchangeable with each other by a mere variation of the reduced frequency as the governing magnitude with respect to
unsteady effects.
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1. Introduction

According to P. BuBLITZ [1] in his thorough survey of the history of aeroelasticity the very first experiments in unsteady
aerodynamics were carried out by R. KATZMAYR [2] in 1922. In context with the propulsion of birds Katzmayr investigates
the mean lift and thrust of three profiles belonging to the Gottingen series Gnnn, where nnn denotes a 3-digit number
[3]. The profiles selected closely resemble the wing cross-sections of medium-sized birds like pigcons (cf. G189 and a typical
aerofoil section in [4], p. 70, 71). The results of Katzmayr’s experiments show that a pure plunging motion, despite a slight
increase in drag and decrease in lift, leaves the steady polar curve unchanged, whereas pure pitching motion causes a
drastic increase in drag for increasing pitch amplitudes. Thus the lift decreases for a positive steady angle of incidence
and increases for a negative angle. To the author’s knowledge, Katzmayr’s measurements were never interpreted
theoretically. In addition to other conclusions, the results will be explained in the course of this paper. A series of theoretical
papers appears in the field of unsteady aerodynamics in the two decades following Katzmayr’s experiments, almost all of
them predict thrust for pure plunging motion or try to explain the phenomenon of propulsion from the point of view of
quasi-steady aerodynamics. Neither the experimental results denying precisely these predictions are regarded nor is the
crucial test repeated, if doubts about the reliability of the data occurred.

In 1924 unsteady aerodynamics is founded with W. BIRNBAUM’s famous paper [5] in which he already states that
“propulsion requires necessarily a nonzero plunging motion in combination with a pitching motion delayed by
approximately 90° versus the plunge” (p. 285). However, he also predicts, that “even pure plunging motion produces
thrust similar to the Knoller-Betz effect”, whereas Katzmayr finds an increase in the drag coefficient.

In 1936 H. G. KUSSNER [6] postulates an efficiency n = —u,W,/L,, = 0.5 of the pure plunging motion for any
reduced frequency, where 7 is the ratio of the mean propulsive power —u,W,, to the mechanically raised energy L,, to

m

maintain the plunging motion. He explains the origin of the formula (in the right hand column of p. 418) as follows:

Each line of bound vorticity experiences a force perpendicular to the direction of the flow passing the line. Since the air along the plate
does not flow precisely in the horizontal x-direction, the acrodynamic force must possess a small horizontal component, which is compared
to the lift in the order of magnitude of the angle of incidence. This component is the induced drag, which may become negative for a
suitable plunging motion of the aerofoil, that means, it may produce a propulsive force.

Kiissner applies the well known analogy between force F = I' Ar x gv,;, acting on a vortex line of strength I" and
length Ar, which passes a fluid at rest with the kinematic velocity v,;,, and force F, = I Arx B on a steady electric current
of strenght I and length Ar in a steady magnetic field B. Of course, the formula predicts the right lift. But the analogy
also holds truc for the next step, in which the powers are to be computed. The two forces are powerless forces, i.e. no
energy is required to exert the forces. The expression for the mechanical power P = F- v, thus vanishes for the same
reason as the electric power (I Ar may be considered the flow ev, of a continuous stream of electric charges e).

In contradiction to this conclusion, the propulsive force of an oscillating aerofoil requires continuous mechanical
energy to overcome the loss of energy carried away by the disturbed particles (enriched with kinetic energy in the boundary
layer) or — expressed differently — contained in the trailing vortices.

Though I. E. GARRICK [7], also focussing his paper on “the propelling or drag force experienced in a uniform
airstream by an airfoil”, computes very carefully the energy content of the wake, he obtains results similar to Birnbaum
and Kiissner: “It is observed that a propelling force exists in the entire range of I//k, the efficiency being 50 percent for
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infinitely rapid oscillations and 100 percent for infinitely slow flapping” ([7], p.425; k is equal to w*). Including
TH. THEORDORSEN’s work [8] and H. WAGNER’s explanation for the lift of an impulsively starting aerofoil [9], the classical
papers [5] to [9] have formed the basis of unsteady aerodynamics up to now. The computations of lift and moment for
the oscillating aerofoil (including the aileron) and their successful application to flutter analysis experienced extensions
into three dimensions, compressible flow and non-harmonic motion. Nevertheless the following presentation and discussion
of a newly formulated approach to propulsion and flutter does not necessarily require an exhaustive review of all the
papers subsequently published and frequently referring to the above mentioned classical authors.

2. The mean power

Considered is a rigid body passing through a fluid with the prescribed velocity ». To maintain the motion a force F
continuously supports the moving body to balance the force F,;q = —F resulting from the fluid (e.g. for an aeroplanc
the thrust of the engine compensates for the frictional force). Work Wdone by force F acting on the body passing distance
dr during time interval dt is
. dr
W= \|F-dr=|F-vdt with v:=— (1)
dt
or
W = ijluid ~dry, = ijIuid " Dy, dt (la)

with vy, describing the kinematic motion of the fluid relative to the moving body. The integrand in the second expression
for W is the rate of working, in other words the power

P(t) = F(t) - v(t) or P(t) = Fra(t) - vy,(0) . (2)

For harmonic variations of the kinematic velocity, this expression leads to the key equation of the paper, the mean power
{P) during the period T of the oscillations

T

1

Fy= jP(r) d. (3)
0

The concept provides a unified and consistent approach to the basic and inherent mechanisms in unsteady aerodynamics,
propulsion and flutter. Both mechanisms are to be seen as complementary features in the different degrees of freedom;
they are mutually dependent and interchangeable with each other by a mere variation of the reduced frequency w*, based
on half chord length //2 and the undisturbed onset velocity u,,

w2

g

w* :

s (4)

where w = 2n/T is the circular frequency of the harmonic oscillation. w* is the governing magnitude with respect to
unsteady effects in acrodynamics. For a dynamic system with n degrees of freedom, represented by the generalized coordinates
q, the mean power consists of the n individual contributions {P )

(Py= Y (Ppy= Y <Qrdp, 5
=1 f=1
with Q as the generalized forces and ¢, := dq,/dt as the generalized velocities. Each (P ;) may change its sign depending
on the various parameters in the mechanical system. The sign means
(P;»> >0 Power is consumed (has to be provided for the system),

(P,;» <0 Power is produced (has to be released from the system).

However, the total mean power is expected to remain positive, since it balances the kinetic energy gained by the fluid in
the wake. '

3. The kinematic velocity field

The mechanical system is a streamlined obstacle starting impulsively with a prescribed velocity v at a distinct time and
surrounded by a sufficiently large volume of fluid which is assumed to be completely at rest before the motion starts.
Hence, the content of kinetic energy in the fluid is zero before the motion begins. Attached to the space containing the
fluid is a frame of reference B = {0; ey, e,, e5} with o as the origin and {e;} as the vector basis derived from the natural



SEND, W.: Mean Power in Unsteady Aerodynamics 115

Cartesian coordinates (x') in the sense of ¢;:= 0/0x’. The notation with respect to differential geometry follows [10]
throughout the paper. Particularly the Einstein summation convention holds; expressions like (x’) are to be read as
(x', x2, x3) and terms like x'Ef mean x' - E{ + x?- E4 + x3 - E4. The lower index i in E{ denotes the rows and the upper
index j the columns of the matrix E = ((E)). Another frame of reference B* = {0*; e¥, e%, €%} with o* as the comoving
origin and the basis {e}} derived from the Cartesian coordinates (x*J) fixed with the blade (Figure 1) permits the precise
description of the obstacle’s motion.

R
0 = ad' (1)
« Fig. 1. Space-fixed and comoving coordinate
Basis B Basis B systems

Any point x in the space may be located either with respect to B by the vector oxX = x'e; or with respect to B* by
the vector o*x = x*e¥, briefly expressed by x and x*. The transformation from B to B* is effected by translation of the
origin 00 * = a'(t) ¢; and orthogonal rotation of the vector basis e¥ = E)(t) ¢; with the determinant of the transformation
matrix E being det (E) = +1 and E~' = E”. The transformation is uniquely defined by the functions a'(t) and Ej(t). Of
course, one or more transformations may follow one another, each of which in general consists of one translation plus
one rotation. For the one transformation from B to B* considered here the two alternative descriptions of an arbitrary
point x lead to the following formulas for the transformations between the two coordinate systems

xH(x*, 1) = a'(t) + x¥Ei(t) and xM(x, 1) = (x' — a'(1)) EJ(r). (6)

Two different kinematic velocity fields which have to be distinguished very carefully follow from Eq. (6). The first one is
vin.p and describes the rate of change with respect to time of the (x'), if the (x*/) are kept fixed

Viin, B(X™, 1) = o [x*(x*, O]y = d'(1) + x*Ej(r). (7)

The field describes the motion of the moving body (the v in Eq. (1)). The second kinematic velocity field is designated
v, - and describes the rate of change with respect to time of the (x*/), if the (x) are kept fixed

Ui, e (X', 1) 1= % XM Ol = —d'(0) EF() + (3" — a'(0) EF (). ®)
This last field is the very one which describes the apparent kinematic velocity of the fluid with respect to a comoving
observer. Besides the different physical meanings, the components of the two vector fields are given with respect to different
bases and the first one may not be used for the inner product with a force computed in the comoving frame without
transformation of the components. Replacing the coordinates (x*/) in Eq. (7) and (x%) in Eq. (8) by the respective terms
in Eq. (6), the components of v, g(x, t) are

Vkin,n (X, 1) = di(8) + (x* — a*(1)) E{ (1) Ei(1) )
and for v, pe(x*, 1)

v (1) = —aM () — x*QU(1); a*(t) = a(t) E{’(1) (10)
and .

QU(t):= —Ey(®) EF(t), with Q=E E"=-QT. (11)

The antisymmetric matrix @ is frequently called the matrix of rotation. If vy, g is transformed into the basis B* by

v = E - vy, the components of the two fields may be compared. The preceding transformation reads explicitly
B = Vinw ElV = d - El + (x* — d) E{'E}- E[V. (12)
With Eq. (6) and E - ET = (E - ET)" = Q7 the final result is

v = a* () + x*QI(r). (13)

8
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With respect to the same vector basis the two kinematic velocity fields differ merely by a sign vi%, 3 = — v, g The only
field of further interest is now v, . referred to simply as v,

The field above enters the integral equation for the solution of the flow problem which determines the relative
velocity field v, = vffy + vff, of the fluid particles relative to the obstacle. v¥, is the physical motion of the fluid (with
respect to the space); in classical aerodynamics the field is induced by the “weak™ boundary condition which requires a
vanishing normal component of the relative velocity for all points on the surface of the obstacle. A closer discussion of
the physical approximations leading to this integral equation may be found in [11], [12].

4. No propulsion by a pure plunging motion in linearized theory

For a pure plunging motion, the transformation B into B* with the translation (a'(t)) = (—g(t), 0, —h(t)), g(t) = ut,
h(t) = hy cos wt, and the trivial rotation E = diag (1, 1, 1), Eq. (10) yields

(VL (X 1) = (8(0), 0, h(t)) = (g, 0, —how sin wt) . (14)

The conventions for the motion are the usual ones in unsteady aerodynamics; the airfoil starts at t = 0 “at the bottom”
and moves “from the right to the left”. Once the kinematics is defined, the amplitudes and phase shifts (obtained from
the real and imaginary parts) of the unsteady forces and moments are uniquely determined relative to the motion and, of
course, within the limits of the theory. As a consequence of the theory, a harmonically varying kinematic velocity field
leads to harmonically varying forces and moments. Without knowing further details, the force F* (= F%,,,) resulting from
Eq. (14) may be described in 2D theory by

(F*(1)) = (F, cos (ot + ¢yp), 0, F. ,cos (ot + ¢, ). (15)
F. . F., are the amplitudes and ¢, ,, ¢. , the phase shifts versus /(r) yielding the power
P(t) = F*(t)- vl () - e¥ - eF  with e¥-ef =0, = e [}- (16)
kin j 1 i 1 Jl OfOI'j + [

With Eqgs. (14) and (15) P(¢) in the previous formula reads explicitly

P(t) = ug - F, ,cos (ot + ¢y.,) — howsin wt - F. , cos (ot + . ) (17)
and leads to the mean power according to Eq. (3)

(P) =+ Lthyw F,,sing_,. (18)

BIRNBAUM [5] gives a “rough approximation” for the mean negative drag — (D) of a plunging motion, which reads in the
notation of this paper

2
—{(D) = F, - 2nw*> <h0> with Fy:=gq,"S, do = l ou?, (18a)
12 2"

where h is the plunge amplitude, w* the reduced frequency based on half chord length /2, ¢ the density of the fluid, u,
the undisturbed onset velocity and S = [b the surface with b as the span. Kiissner proves that the approximate formula
(18a) for the trust of the pure plunging motion in Birnbaum’s paper holds true for all reduced frequencies (W,, in Eq. (55)
of [6]). The reduced frequency in Katzmayr’s experiment is about w* = 0.01. With h, = 0.Im and [ = 0.12m (for the G189
aerofoil) the change (AD)/F in the theoretical drag coefficient according to Birnbaum’s formula is assumed to bc

(AD)

~ —18-1073, (18b)

0

whereas Katzmayr finds an increase in the drag coefficient of about (ADY/F, = +7.0 - 102 (the two coefficients are not
divided by the amplitude of the motion).

Figure 2 shows the amplitudes and phases ¢y , and ¢y, , for the normal force coefficients and ¢, , and ¢,, , for the
moment coefficients of the plunging (index f = h) and pitching (index [ = o) plate as they are given in [6], [8]. The
kinematics in this paper is chosen such that the resulting forces and moments from the numerical solution of the integral
equation discussed above (e.g. [13]) agree with the classical results. For the convenience of the reader these functions are
provided in the notation of this paper in Appendix A and include the variation of the pitch axis. The coefficients are
related to the respective amplitude a by a = hy/(l/2) for the plunging motion and by a = «, for the pitching motion; the
latter is treated in Chapter 6. Inserting the normal force coefficient in Eq. (18)

hq
(P) = +—l10a) Fo:Cyysin ¢y, — B (19)
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Fig. 2. Amplitudes and phases of normal force and moment coefficients in 2D thin plate theory for plunging and pitching
motion versus reduced frequency w*

leads with the mean power coefficient {c;» defined by

P 1
Ceay =2 Pyim Foetig = — gudS, (20)
Poa 2
to the final result
{epy = Y @*éy ysin gy, = (e = nw*? for @ — 0. (21)

From Eq. (A1), Appendix A, the limit ¢y , — 2nw* for small w* is obtained and Figure 2 shows that sin ¢y , — 1 holds
for o* — 0. Except for 1/2 caused by the mean value formation in Eq. (18) and, of course, a different sign, the same
approximate formula as in Eq. (18a) is found. However, the meaning of the expression now is entirely different! The plunging
motion requires the mean power {cj» in Eq. (21) over the entire range of w* because no other source of energy is available
to balance the continuous loss of energy carried away in the wake. From the initial point of time at which the motion
begins, the wake grows larger and larger and finally covers a half infinite domain behind the moving obstacle. Thereby,
the mean power very soon reaches a constant value and the total kinetic energy in the fluid increases linearly in time. The
entry-point of the energy into the mechanical system is the mechanism which drives the plunging motion, e.g. an electric
motor, which provides the time-dependent power P,(¢) at the degree of freedom h(r) instead of g()

P,(t) = —howsin wt - F, , cos (ot + ¢, ;). (22)

Eq. (22) is the second contribution to P(¢) in Eq. (17). A further conclusion from Eq. (18) is to be drawn. Without details
on the power P(t) required for the uniform motion

Py(t) = uo - Fyycos (0f + dyp)s o = ¢, (23)

it is obvious that no mean power {(P,» occurs. Hence, neither mean drag nor propulsion is physically possible. Moreover,
the investigation of F , for a very thin profile shows that the values of F, , are zero within the limits of the numerical
solution of the corresponding integral equation as long as no steady angle of incidence for a symmetrical profile is assumed.
The thin plate solution is the limiting case of vanishing thickness under the same kinematic conditions. The investigation
of a profile very close to the thin plate also proves that the presence of a suction force, discussed in the early papers as
the basic mechanism for propulsion, is not to be explained on the basis of the linearized theory. Table 1 provides the real
and imaginary parts of normal and horizontal force coefficients from the numerical solution for a NACA0001 profile and
for comparison the values from the analytical solution (Appendix A) for three typical reduced frequencies w* 0.01, 0.1 and
1.0 The accuracy of the numerical solution is = 10~%).

The *“ —" means that the value is not to be obtained from the theory. The complex coefficients are related to the forces by

Ex.ll E:.h hO

Con = Cnn = with a, =

C . —.
Foa, Foay, Ij2

=x,h

(24)

The normal force coefficient ¢y , and the coefficient ¢, , are equivalent to each other.
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Table 1. Coefficients of the unsteady forces F, , and F.,

(’)* re (g.\',’l) lm (.C.\'.h) re ((—.:.ll) iITl (g:‘h) Wing
2n 2n 2n 2n cross-section
0.01 0.0000 0.0000 0.0004 0.0099 NACA0001
- - 0.0004 0.0098 thin plate
0.10 0.0000 0.0000 0.0129 0.0836 NACA0001
— — 0.0122 0.0832 thin plate
1.00 0.0000 —0.0000 —0.3969 0.5368 NACAO0001
— — —0.3997 0.5394 thin plate

5. Forces and moments

The following linearization equation corresponds to the physical simplifications in the theoretical approach and holds
true for the kinematic velocity field of any degree of freedom f

oRh*, ) = ol oX*) + Ul (6 - d, - SOt (25)

a, is the respective amplitude and 1, the prescribed phase shift of the particular degree of freedom with respect to a
motion of reference (in this paper the pitching motion has been selected as the motion of reference, hence 1, = 0). The
solution of the integral equation (e.g. [14]) for the induced velocity field provides the relative velocity field v¥,, formed in
the same manner as Eq. (25),

o, 8) = o] o (™) + v ;(x*Y) - ap - 1T, (26)

The computation of the complex pressure coefficient requires, due to Bernoulli’s equation, the additional knowledge of
the complex scalar potential @(x*, t) for the induced velocity field. A discussion of this aspect is entirely omitted here; the
reader is kindly asked to consult the pertinent literature, e.g. [13]—[14]. Unfortunately it is hard to find textbooks or
publications providing the complete expressions needed in this paper. The general expression for the pressure coefficient
belonging to a particular degree of freedom is

cp(x*, 1) = M = L <vfi%1.f - U;kc%.f =) Ew)f) 3

) ud ot
QU

(27)

2
p is the local pressure and p_ the pressure in the fluid at rest. In the linear approximation the pressure coefficient is
formed again like v, and v}, in Eq. (25) and (26) and reads explicitly

rel

ep(x*k, ) = (‘P‘O(x*k) + QP‘.f(.\‘*k) “dge gl L[ ]- d} (28)
with
k 2 ;
QP.f(x* ) = u_z ’ (Ufin.o ’ l’ffin,f — o0 l’;kcl.,/‘ + 1w @_/‘) (29)
0
and
skk I *2' *2
Cp,o(x*) = u_z (Vim0 — Vit o) - (30)
0

The third summand in brackets proportional to a7

1 : .
[] = - ('_)lfii.f - l’:kc% PR e (31)
ul :
has no physical meaning within the limits of a linearized theory because it is merely one of several contributions to the
higher order terms of d, occurring in steps previous to the computation of the pressure. As soon as nonlinear terms are
regarded in the solution of the integral equation for the “weak” boundary condition, terms containing the squares or
higher powers of the amplitude d, have to be considered also (see Appendix B).
Finally, the total pressure coefficient for n degrees of freedom is the sum of the steady pressure coefficient and the
contributions from the individual degrees of freedom f and is expressed
f=n .
ep(X* 1) = cp o (x*) + f; Cp, p(x*) - dp - e'@Te, (32)



SEND, W.: Mean Power in Unsteady Aerodynamics 119

The above formula holds true everywhere in the flow field. Computation of the pressure is the necessary prerequisite to
obtain the proper expression for the power coefficient. The surface S of a three-dimensional obstacle is considered to be
parameterized by a pair (u, v)

S = {x*w,v)|lueU,veV}. ‘ (33)

The domains U, V for the parameters are assumed to be defined appropriately. An element dS(u, v) of the surface is exposed
to the force dF*/

dF* = f*i(x#* 1) - dS(u, v) (34)
with the force density f*/ defined by the local pressure coefficient
SHOES ) = —qo - cp(xE 1) - n§l (xE). (35)

n#l is the local normal direction of the surface element dS, pointing into the fluid at any point xg of the body. The minus
sign stems from the fact that a positive pressure exerts a force onto the surface and points by definition of the normal
vector in a negative direction. In the case of the thin plate solution, the pressure difference Ac, = ¢, — ¢; between the
pressure ¢, on the lower side S~ and the pressure ¢, on the upper side S* is considered (Fig. 3); the minus sign disappears
and the force density reads

Sk, 1) = +qq - Acp(xEk, t) - n¥ (xh). (36)

Boths elements, the local force density and the kinematic velocity field, are now prepared to form the general expression
for the power P(¢) in Eq. (16)

P([) &= jj‘ f‘*.i(xsz(”a U), t) ' U:‘ill'n('\';(k(”ﬂ l‘), [) : (Sjl : dS(ll, L‘) . (37)
S(u,v)

The power P(t) consists of two parts contributed by the two constituents in the transformation, i.e. translation and rotation.
Translation provides the “force” parts

Pians® = + g0 [ cp(x¥(u, v), 1) - n# (xF*(u, v)) - a*(t) - 8, - dS(u, v) (38)
S(u,v)

and rotation the “moment” parts

Po(t) = +qo [I cpx¥(u v), 1) nd(xE u,v) - x§(u, v) QIN) - 55 - dS(u, v). (39)

S(u,v)

In spite of their different physical meanings, both contributions are treated in Eq. (5) as generalized forces and generalized
velocities leading to expressions for the mean powers at the individual degrees of freedom. The different meanings lead to
different mechanisms to provide the powers for the mechanical system or to release them. The force parts are related to
drag and propulsion and the moment parts to torque oriented clockwise or counterclockwise to the respective moment
axis. The next step in the general procedure requires the calculation of the pressure coefficients, then the surface integrals
are to be evaluated and, finally, the mean powers according to Eq. (5) are obtained.

Eq. (34) leads to the general expression for the forces acting on a profile

F¥(t) = ([ 90, v), 1) dS(u, v). (40)

S(u,v)

Eq. (40) describes the forces with respect to the comoving basis. Obviously, the linearized theory according to Eq. (32)
leads to vanishing mean forces (F*/). However, F*! and F*3 may not be confused with drag and lift. Both physical
phenomena are vectorial quantities and act independently of their description with respect to a particular frame of reference.
By definition lift points in the opposite direction of the obstacle’s weight and, with the motion u, perpendicular to the
gravity force, drag describes the force of the fluid acting on the moving body parallel to u,. Dividing the drag into frictional

(a) n* (xtk (u,v) (b)

Fig. 3. (a) Normal vector and parameters (u, v) for a wing of
S Cu finite span, (b) Pressure coefficient Acp = ¢, — c¢j in thin plate
theory
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and mean dynamic drag, the mean total force on the body
<Fbody> = <Flil‘l> + Fgravily + Ffriclion + <den4drug> (41)

disappears, if mean lift and weight on the one hand, and friction and mean thrust on the other hand, reach a state of
equilibrium. {(Fy.4,»> = 0 is the condition for the trimmed flight of a body in uniform motion as long as inertial forces are
neglected. The occurrence of a trimmed flight is bound to the occurrence of a negative mean dynamic drag, i.e. a mean
dynamic thrust, to balance the unavoidable friction. Though friction is also an aerodynamic phenomenon derived from
the boundary layer equations, it is useful to destinguish between the steady outward manifestation of friction and the
effect of dynamic thrust resulting from unsteady aerodynamics. The aerodynamic forces lift L and drag D are related to
the forces F*/ by

Fayndreg + Fuse =D ey + L-e; = Fle; = F¥e¥ (42)
and read
D(t) = F¥(1)- EXt) and L(1) = F¥(1) EX1). (43)
Eq. (43) prepares the definitions of mean drag
T T
1 ) 1
DY = — | F*(t)- EXt)dt = = | FY(t)-dt 44
<D} = J () E; (1) T J (0) (44)
0 0
and mean lift
T T
1 ) 1
LY =— | F¥i(t)- E3(t)dt = — | F3(t)- dr. 45)
Ly T j (6) - E5 (1) T J (0) (
0 0

The degree of freedom g(t) = uyt leads to the mean power {P,> = uy{(D). The same expression is obtained also from
Egs. (16) and (37)

P() = [ f¥(xE 0 (xS 0 - EF @) - Ef(1) - e
S

“e,-dS. (46)

m

According to Eq. (10) the contribution in v, from the translational part of the motion with respect to the basis B is

Ukinwrans (1) = —@5(0) - E{'(0) - E}(1) = —d"(1) (47)
and leads in the formula
Pians(t) = —d"(0) - [ f"(x§", 1) - O,y AS (48)
S
and for the particular contribution coming from d(t) = —g(t) to
P,(t) = g()- F'(1) with <P,> =uy-<{D). (49)

Eq. (44) permits the important and general conclusion that a necessary condition for the occurrence of mean drag, either
positive or negative, is the presence of a time dependent rotation. From linearized theory, no mean propulsion is to be
obtained for pure translational degrees of freedom.

The various moments M, are defined via Eq. (39). The decomposition according to Eq. (5) leads for the respective
degree of freedom f to the power

Poy=0Q; 6y and M, =06,-Q, with 6, = +1. (50)

The plus sign §, = +1 holds true for angles o, defined in a mathematically positive direction (rotation counterclockwise).
0, = —1 has to be applied for clockwise rotations (mathematically negative).

6. The effects of a pure pitching motion

The pitching motion is confined to a pitch axis perpendicular to the flow and located on the chord of the profile section.
The angle of incidence «(¢) is oriented in a clockwise direction (mathematically negative). The transformation consists of
a translation a'(t) = (—g(1), 0, 0), g(t) = uyt, and a rotation with

cose 0 —sina 0 0 a(r)
E(@@t)=| 0 1 0 s Q@) =| 0 0 0 |, (51)
sinoe 0 cosuo —a(t) 0 O
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leading to an intermediate frame of reference B'. The final frame B* is obtained after another simple transformation shifting
o* away from o' (the intermediate origin) along the x''-axis of B’ in a negative direction by an amount x,, i.e. the position
of the pitch axis. The corresponding transformation x* = af + x* - 6% is independent of time with (a)) = (—x,, 0, 0).
Eq. (10) leads to the kinematic velocity field

(UL 1) = (g cos at) — a(t) x*2,0, g sin o(t) + a(t) (x* — x,)). (52)

The angle of incidence may consist of a steady part o, and an unsteady part o;(t) = o, cos wt. The angle o = o, + o; is
linearized in the unsteady part; the trigonometric addition theorems yield

cos o(t) = cos o, — sin o - o, sin o(t) = sin o, + cos o - 0; . (53)

For Acp of a thin plate the kinematics in Eq. (52) leads to a simple result. The translational power is connected with the
one translational degree of freedom g(t) such that

Pians(®) = +40 - &+ ([ [n¥ (cos g — sin og = at;) + n¥3(sin g + c0s ot - )] - (Acp.o + Acp 5 %o ) - dS  (54)
S+

and the rotational power belongs to the one rotational degree of freedom «(t) as
Po(t) = +qo- 0 [ [—n#x*> + nF(x* — x,)]* (Acp o + Acp , % ")+ dS. (55)
o
It should be noted that in each step from Eq. (37) to Egs. (38), (39) and then to Eqgs. (54), (55) two minus sig;nS are compensated
for and thus result in positive values. The further investigation in this chapter concentrates on the behaviour of the solution

for the uncambered thin plate with a steady angle of incidence o, = 0. Before P,,, = P, and P, = P, are calculated,
the values of F, , and F. , are examined.

Table 2. Coefficients of the unsteady forces F, , and F_ ,

w* re(c,)  imle.,)  rele,)  im(e,)  wing
2n 2n 2n 2n cross-section
0.01 0.0000 —0.0000 0.9951 —0.0327 NACAO0001
— - 0.9829 —0.0308 thin plate
0.10 0.0000 —0.0000 0.8516 —0.0454 NACA0001
- - 0.8467 —0.0391 thin plate
1.00 0.0000 —0.0000 0.3899 0.9360 NACAO0001
— — 0.3897 0.9392 thin plate

The complex coefficients are related to the forces by

e E.\'.d E' o

= 56
- e = (56)

(o}
Il

Cxa = 5
Foog

Table 2 shows that there is almost no difference between the thin plate solution and the very thin but finitely thick profile

NACAO0001. The F, , again disappear within the accuracy of the numerical solution and may be neglected. In conclusion,

the thin plate solution is a good approximation for the forces occurring at profiles with finite thickness. The unsteady
normal force and moment coefficients are obtained from the pressure coefficient by

1
QN,::((CU*a Cp) = E : A(_’pd(u, v, (I)*. éll) . dS(Ll, U) (57)
S* (u,v)
and :
* 1 Z z *
QM,o:(w 5 ép) = E : (S . C,,) 0 AQp.a(ll, v, W™, ép) . dS(u’ L7) (58)
S*(u,v)

with &= x*!/l and ¢, := x,/I. Both definitions also hold true for the steady normal force and moment coefficients ¢y
and ¢y o. The minus sign in the definition of the moment coefficient is explained in Eq. (50). The dependence on the
reduced frequency w* and the relative pitch axis ¢, results from the solution of the corresponding integral equation. Both
parameters have been suppressed so far to avoid an annoyingly high number of arguments. For the uncambered thin plate



122 ZAMM - Z. angew. Math. Mech. 72 (1992) 2

with (n¥) = (0,0, 1) and with &g = 0° the powers

P,(t, w* &,) = qoSugog cos ot - [cy o + Cy (0%, &) o cos (ot + ¢y (0, 9)) (59)
and

Pd([! U)*’ é[)) b _qOS[(_ch(D) Sin wt - [CA‘/I.O + (Thl‘a((l)** L.:p) %o COS (U)[ + (/)1\/1.1((’)*1 ép))] (60)
lead, through the definition in Eq. (20), to the mean power coefficients

<CII._1;(U)*’ ép)> = % ' ENAQ((’)*~ ‘;:p) COS (/)1’\"1((')** ép) (61)
and

Cem a0 &> = 3+ [—20% - &y (0%, &) sin dyy (0%, &) (62)
From the definition of {cj; ,> it is obvious that the power coefficient is identical to the drag coefficient {cp).

{epy = <ep,,» > 0 Dynamic drag occurs (in addition to friction),

{epy = <ep,,» < 0 Dynamic propulsion occurs (in the opposite direction of friction).

Fig. 2 shows that a pure pitching motion can effect propulsion. The power needed is raised from the source which drives
the pitching motion. This degree of freedom consumes power in the whole range of w*, if the pitch axis is &, = 0.25. The
phase ¢y , of the normal force coefficient exceeds 90° and {c;; ,» becomes negative above a reduced frequency w* = 1.6.
The efficiency of the mechanism of propulsion is represented by the ratio between the (negative) mean power gained for
propulsion and the power provided for the pitching motion. The remaining power not consumed for propulsion is carried
away as kinetic energy in the wake. Defining the efficiency 5 of the propulsion by

- <Cll.;/((0*ﬂ ép)>

(e, (0¥, )

the maximum value is 5(w*, 0.25) — 0.5 for large w*. It is worth mentioning that KUssNER ([6], p. 419) in this particular
case agrees with this paper. The value 1(2.0,0.25) = 0.19 shows that the efficiency 5 attainable for reasonable reduced
frequencies is very poor. Another peculiarity is the occurrence of negative mean power for the pitching motion in the case
of very low reduced frequencies and for &, = 0.0. The curve with the diamonds in Figure 2 shows that ¢, ,(<0.04, 0.0)
is below —180°. The sine in Eq. (62) becomes positive and torsional flutter occurs.

n(w*, &) = for <ep > <0 (63)

{4y > 0 Damped torsional motion,
{cp. > <0 Excited torsional motion (torsional flutter).

The effect is well known (e.g. H. W. FORSCHING [15], p. 487), but of no major importance in incompressible aerodynamics.
As can be seen from Eq. (62), the parameter of stability ¢ introduced by Forsching (his Eq. (6.18) is equivalent to the sine
of the phase of the complex moment coefficient ¢, ,.

Finally, Eq. (45) for the mean lift leads to the mean lift coefficient

L
<CL,a((U*’ é./p)> = F< .iz = e [COS Oy (_'_\..1((0*, ép) " COS (f).\'.z(a)*ﬁ ép)
0 0

+ sin o - ¢, (w*, &) cos ¢, (0* ). (64)

The discussion of <{c; ,» takes a course similar to {c¢;; ,> in Eq. (61). For vanishing ¢, , and for low reduced frequencies,
the mean lift reduces the steady lift for a positive steady angle of incidence and increases the mean lift for g < 0. The
effects are proportional to the square of the pitch amplitude o,. The influence of o is reversed above w* =~ 1.6 due to the
fact that cos ¢. , changes its sign.

7. The interpretation of Katzmayr’s experiment

The two observation in Katzmayr’s experiment with the pitching profile, increase in drag and decrease in lift for a positive
steady angle of incidence (and vice versa), are basic properties of the equations for mean lift and drag, as derived already
in the last chapter. Table 3 shows the technical data for those of Katzmayr’s experiments discussed here.

The following definitions abbreviate the notation in this chapter

ép=<Acp > a2-10% and &= (Ac. > i 102, (65)

The differences are formed between the values for the selected amplitude and o, = 0° for the respective angle of incidence.
Egs. (61) and (64) provide a theoretical explanation of the phenomena but the accuracy is unsatisfactory. E.g., for g = 6°
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Table 3. Technical data of Katzmayr’s measurements

Profile G189 Pitch frequency f, 0.33, 0.5, 0.83 Hz
Chord length [ 0.12m Reduced frequency w* 0.007 ... 0.017
Aspect ratio A 6 Pitch axis &p 0.5

Pressure po, = 1/20u 49, 98, 196 Pa Pitch amplitude 9,12, 15deg
Original notation of p, 5,10, 20 mm WS Angle of incidence g 0, +3, +6deg
= Onset velocity u, 9.0, 12.7, 17.9 m/s Plunge frequency f, 0.19, 0.48 Hz
Reynolds number Re 7.2-10*...1.4-10° Plunge amplitude h, 0.1 m

and o, = 157 in the linear theory (index lin), ¢, ;;, = 22.0 overestimates the increase in mean drag and ¢, ;, = —2.3
underestimates the decrease in mean lift. For the equivalent experimental configuration (index exp), KATZMAYR ([2], Table 1
onp.81)finds ¢p o, = 7.2and ¢, ., = —20.5. He mentions that the measurements do not differ for the various frequencies
within the tolerance of his measuring device. As far as the dependence on the presure p, is concerned, the overall behaviour
of ¢p p and ¢, ., is also almost independent of p, and negligible with respect to the basic interpretation of the results.
The theoretical values are obtained from Figure 2. ¢y , = 2w and ¢ , = 0° are fairly good approximations for w* =~ 0.01.

N.,a =
Including the well established formula ([16], p. 13) for the reduction of lift for a wing with finite aspect ratio A
k(A) A in the present ¢ k(6) g (66)
k(A) = ; ase =
A4+2 P 4

leads to a slight reduction of drag, but the discrepancy in lift becomes even worse.

Hitherto the normal force coefficient is assumed to be a linear function of the angle of incidence ¢y y;,(2) = 27 - o.
No regard is paid to the breakdown of lift above a particular o > o, due to flow separation which takes place for profiles
as well as for the thin plate. Katzmayr’s polar curve (Figure 1 in his paper) shows the effect very clearly. The very low
reduced frequency permits the assumption that the flow separation on the pitching aerofoil closely follows the polar curve
obtained in steady flow. Hence, a more adequate nonlinear theoretical model (index nonl) includes flow separation by
means of a modified normal force function ¢y _,,ni(2). The function approximates flow separation by a parabolic deviation
from ¢y j;, above the angle of incidence || = o, and with ¢y 00 (%)) = €y nom(%2) for another angle of incidence o, > o, > 0.
The function is antisymmetric in o, possesses a continuous first derivative and has two extrema +5/4. ¢y ,om(%;) at
o= +(ot; + a5)/2

CNynom(®) = 2mat for —ay 2 a0 S oy,
o+ oa; a4 o
= _Znal & 1 - £ 4“) for o é —al N (67)
oy 0y — 0y
o0 —0ay o — 0y
= —2na, (1 — __;> for o< .
oy Oy — 0y

Selecting «; = 87 and o, = 207, the function approaches fairly well the experimental data in [17], Figure 6.43 on p. 438, up
to o = 25° and is located slightly below the curve for the lowest Reynolds number Re = 3.1 - 10°. According to Egs. (44)
and (45) mean drag and lift are computed with the linearized E(r)

EX(t) = [sin &) + cos o - o, u(t) = og + oo cos ot ,

3 ] 3 (68)
E3(t) =~ cosay, — sino - a;, F*3(t) = Focy noni(@(t)) - k(A).

The mean drag is computed without the term in brackets, i.e. no change of the steady drag from the inclined normal force
due to sin og is admitted (including the term does not change ¢é,, significantly). The results are given in Tables 4a, b and
compared with the equivalent data from Katzmayr’s experiment for p, = 20 mm WS (= 196 Pa).

Table 4a. Mean drag and lift of the pitching G 189 profile compared to thin plate theory including flow separation;
case a: ag = 0°

G 189 ép ¢r, ép éL ép L,

oo = 9° 3.7 0.6 25 — 0.6 2.3 — 55
12° 6.2 - 0.0 4.5 — 55 39 —10.0
15° 8.6 2.3 7.6 — 8.0 1.2 —20.5

Plate ¢p ¢y, ép ér ¢p ¢p

o = 9° 5.8 0.0 5.5 - 20 4.7 - 718
12" 9.7 0.0 9.1 - 6.7 7.4 —16.2
157 134 0.0 12.5 —133 10.0 -27.7

og = 0° og = +3° og = +6°
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For oy < 0 the mean drag for the thin plate remains unaltered and the mean lift changes its sign. Though the model
of flow separation for the uncambered thin plate together with the correction for a finite aspect ratio is only a very coarse
approximation of the experiment, the tendencies as well as the absolute magnitudes describe the experiment fairly well
and are, from the author’s point of view, an extremely satisfying interpretation of Katzmayr’s experiment with the pitching
aerofoil.

Table 4b. Mean drag and lift of the pitching G 189 profile compared to thin plate theory including flow separation; case

b:rag <0°

G 189 ¢p ér ép ¢y ép éL

og = 9° 3.7 0.6 3.9 49 53 19.7
12° 6.2 0.0 7.2 10.3 8.5 29.8
15° 8.6 23 9.5 16.0 104 39.2

Plate ¢p ‘L Cp ¢y Cp 43

oy = 9° 5.8 0.0 55 2.0 4.7 7.8
12° 9.7 0.0 9.1 6.7 7.4 16.2
15° 13.4 0.0 12:5 13:3 10.0 2.7

o = 0° o5 = 3 o = =°

Not yet interpreted is the plunging motion with its slight increase in drag and a very low decrease in lift. In Chapter 4 it
has been proved that the linear theory admits no mean drag and lift for the pure plunging motion. However, for the
quasi-steady case of plunging motion, the change of the relative position to the onset flow may be thought of as a pitching
motion with an ambiguous pitch axis, the maximum angle of incidence being arctan (hyw/uy) = o,. Again, for low reduced
frequencies ¢y , = 27 and ¢y, = 0° holds true independent of the location of the pitch axis. From the mean power
(P,> = nF,uj for o, = 1° the mean drag of the corresponding plunging motion may be estimated from (P,» = (D) - <h)
leading to

oy = o VarFoto g <D _ 5.3,

(69)

how/]/2 Ug Fy

which is close to the observed value of 7 - 107 3. Following the same arguments as above, the very small decrease in lift
may be interpreted as a result of Eq. (61).

No attempt is made to also include theoretically the effects of camber and thickness; both investigations are beyond
the scope of this paper. The aim of this chapter is to interpret the key results of Katzmayr’s outstanding experiment on
the basis of unsteady aerodynamics in order to prove the theoretical foundations.

8. The Complementary Mechanisms of Flutter and Propulsion

The basic mechanisms are explained for two-dimensional kinematics. The two-dimensional case (Fig. 4) approximates the
three-dimensional spatial motion of an aerodynamic configuration. Figure 5 illustrates the typical degrees of freedom in
unsteady aerodynamics and Table 5 shows the denotations in this paper, differing slightly from those frequently used in
helicopter dynamics [18].

Table 5. Denotations for corresponding 2D and 3D kinematics

2D motion 3D motion

g(t) = uy(t) uniform gliding g(t) = ugt uniform gliding

h(t) = hg cos (wt + %) plunging (heaving) 9(t) = 95 + 9o cos (ot + %) flapping

s(t) = sp cos (wt + o) sliding o(t) = @ps + @y cos (ot + ) lagging
a(t) = ag + oo cos wt  pitching a(t) = ag + oo cos wt  feathering
— no equivalent Q(t) = Qot uniform rotation
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o (t)
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Fig. 4. Three degrees of freedom in two-dimensional Fig. 5. Typical spatial motions of a three-dimensional wing

kinematics

Though denoted as 2D kinematics, the set of motions also describes fairly well the degrees of freedom of isolated
systems like oscillating engine nacelles suspended from a wing [19]. Including a pitch axis as introduced in Chapter 6, the
kinematic velocity field reads in the 2D case

pEL(x*E 1) gcosa + scosa — hsina — ax*®
¥A(x*, 1) | = 0 (70)
i3 (6*k, ©) gsino + s$sina + hcoso + a(x*' — xp)

the matrix E being the same as in Eq. (51). With the linearizations in Egs. (25) and (53) the following is obtained

vl = (cos oy — o; sinog) ¢ + cos og - § — sinog - h — o - x*3

. , ; (71)
v = (sin og + o; COS org) & + sin g - § + cos og - h + a(xF — xp).
For the thin plate the nonzero force density in Eq. (36) reads
%3 1 1 1y . So i (ot +0) 1 hO i (ot +x)
SR 0) = qo | Acp o(x*7) + Acp ((x*7) - — - T + Acp (x*T) - e
' ' 12 12
+ Acp ,(x*) - oy - ei‘”’] . (72)

The integral equation for the sliding motion is the same as for the plunging motion, the normal component of vi;,, multiplied
by a tan og (cf. Eq. (71)). With the ratio of the sliding motion to the pitching motion 7 and the ratio of the plunging motion
to the pitching motion 4

S

T = “sinog and A= * COS o 73
o - 12 N o - 12 S (73)
the power
=4
P(t) = Y Pylt) = Py(t) + Py(t) + Py(t) + P,(0) (74)
=1
consists of the contributions
P,(t) = (sin og + 09 cos wt - cos og) - g - Q(1), Py(t) = —aguow*t - sin (ot + o) Q(t), (75)
Py(t) = —aquow*A-sin (wt + %) 0(),  P,() = + ;_02 o - sin wt - M(1)

with the functions

Q) = Fo - {cy.0 + aoltCy - cos (0t + Py + 0) + Aly - COS (0f + Py, + %) + Cy., - cOs (0t + Py )]}
(76)
and
M(t)=Fo- 1l {cp0 + 0oltCy,y " €OS (0 + Py + 0) + Apr - COS (08 + Pppp + %)
+ Cprq v COS (O + Py )} (77)

The contribution from the steady part cy o in Eq. (76) is not considered, furthermore, its precise computation (including
the term vl in Eq. (71)) leads to a vanishing power in the 2D case and to steady induced drag in the 3D case. The total
mean power coefficient {cp)

(P>

2
Py ag

{epy =

= ep 0 + ey + ey + Lenqy (78)

depends in the 2D case on the parameters given in Table 6.
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Table 6. Parameters of the total mean power coefficient {cy(w*, ¢, 4, %, 1, 0, g))

Reduced frequency w* Amplitude ratio of sliding to pitching motion T

Relative pitch axis & Phase shift of sliding versus pitching motion a

Amplitude ratio of plunging to pitching motion A Steady angle of incidence Og
Phase shift of plunging versus pitching motion %

The coefficients of the individual degrees of freedom in (¢ ) are

{emgy = + 3 cosag{Cy [t cos (¢y,, + 0) + 2 oS (Pyy + #)] + Cy.o - COS Py 4} (79)
lepp = + 3 o* - t{yylrsin ¢y + Zsin (¢y, + % — 0)] + &y, sin(dy,, — o)}, (80)
legay = + L o* ey lrsin (Qy, + 0 — %) + Asin ¢y ] + Cy., o sin (g, — %)} and (81)
(epay = — 3 20%(Cyyltsin (P + 0) + Asin (dprp + 2)] + oy SIN Ppr o) - (82)

According to Eq. (64) the coefficient of the mean lift reads

ey = —tanog - {cp ) - (83)

The efficiency n of the mechanism of propulsion is the ratio of the power —<{cy ,», gained to overcome friction to the
sum of all other powers released or consumed at the various degrees of freedom executing harmonic (or at least periodic)
motions

= _<Cn,g>
(e + Lepwy + {en o

n: defined for <{cpy > 0. (84)

From the preceding equations several important conclusions are drawn (&
subsequently discussed:

The mechanisms of propulsion and flutter require a pitching motion.

The mechanisms of flutter and propulsion are mutually dependent and interchangeable with each other by a mere
variation of the reduced frequency as the governing magnitude with respect to unsteady effects.

The limiting case of quasi-steady aerodynamics w* — 0 leads to the mechanism of flutter, not to the mechanism of
propulsion, the latter being essentially an effect of unsteady aerodynamics.

Additional mean (positive) lift occurs synchronously with propulsion for a positive steady angle of incidence and
mean negative lift for a negative angle (hence, the variation of ¢g provides a sensitive lift control).

For low reduced frequencies, the maximum impact of the plunging motion occurs at » =~ +90° for propulsion as
well as for flutter.

A sliding motion with ¢ = x amplifies the impact of the plunging motion.

{cp,,» may become negative either by means of a negative cos ¢y ,, requiring w* = 1.6 or from cos (¢y , + ») = —1
combined with a sufficiently large 1 (cf. Fig. 2). The latter case leads to the complementary mechanisms of flutter and
propulsion. For simplicity Egs. (79) and (81) are considered without sliding and for very low reduced frequencies leading
to {cy,> = 2n and {cy,» = 2n- w*. Applying for » = 90° the trigonometric identities cos ¢ + » = —sin ¢ and
sin ¢ — x = —cos ¢, the two equations are approximated by

» = 1/4 and cos oy = 1 are assumed) and

1

Il

<Cl'l,g> = _ﬂ(}.CU* sin (/)N.h —COos ¢N,1)7

85
ey & 47 Jo*(Aw* sin ¢y, —cos ¢y.,) . (83)

The approximations sin ¢y , = 1 and cos ¢y , = 1 for small w* allow a further reduction of the equations
{ep,p = —nm(lo* — 1), (86)

ey = +1- io*(Aw* — 1).
For a fixed Z the term 4- w* may be <1. The plunging motion gains power; the dynamic drag {c; ,» > 0 usually is
compensated for by the much larger thrust of an external engine or — for a sailplane — by the power resulting from the
loss of height. Flutter occurs and the fluttering wing of an acroplane may break off. For a sufficiently large decrease in
speed u, the reduced frequency increases such that the phenomenon of flutter disappears.

The principal mechanism of animal flight is complementary to the mechanism of flutter. A sufficiently large increase
in the reduced frequency for a fixed A leads to A - w* > 1. Thus, the plunging motion continuously requires power to be
maintained, coming from the physiological reactions in the muscles of the animal. The gained propulsion {cj > <0
compensates for the friction of the animal’s wings and body.
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The limiting case w* — 0 in Eq. (86) leads to the mechanism of flutter with {cp,y» = mand {cp ;> - —nlo*. One
might also consider 4 — o0, which apparently leads to the mechanism of propulsion, as another limiting case of quasi-steady
aerodynamics. The conclusion is a fallacy. Since the amplitude A, is limited for physical reasons, 2 — oo has to be achieved
by a vanishing amplitude «,. From Eq. (78) it is obvious that the propulsion itself contains the factor «2. Therefore
propulsion vanishes with 7 — co for a bound amplitude h,, the efficiency being =~ 1/iw*.

The function G(¢)

1 , ) hy _
G(og) = 5 (29 gy + 05" 8,) with g, = [/—; "Cy €08 (Py,, + %) and g, =y, COS Py, (87)
for the mean drag coefficient G(x,) = (D)/F, (including the amplitude) has an extremum for g, = —g,/2g, with
G(dy) = —gi/8g,. For low reduced frequencies the extremum is the maximum propulsion F, - G(d,), ie., the negative

minimum drag. The corresponding £ =~ 2/w* leads to large values for w* — 0 accompanied by n = 1/2.

Reduced

frequency
*

- 0. - T T I 0. ! ) !

-90. Phase shift 270. -90. Phase shift 2 270.
> 11, 15.

.| Amp | | tude

rutio A

-

=

! _’J< 0.

tar 0. - ; T ; 0. i T ] 1
-90. - Phase shift = 270. -90. Phase shift = 270.

Fig. 6a, b. Total mean power coefficient (¢ for two amplitude ratios 2 = 3 (left) and / = 12 (right) and for two reduced
frequencies w* = 0.2 (left) and w* = 1.0 (right); reduced frequency w* versus phase shift x (top) and amplitude ratio
/ versus phase shift % (bottom)

Figures 6a—b illustrate that the dependence between reduced frequency and amplitude ratio is almost the same for
an appropriate scale. The total mean power coefficients for w* versus » and 2 versus x only differ slightly; this holds true
for all coefficients in Egs. (79)— (82). The scale of the contour plots is given on the left hand side of each figure. Fig. 7
shows the efficiency 77 in Eq. (84) for two reduced frequencies w* = 0.2 and 1.0 for plunging and pitching motion (without
sliding). Whereas in the first case the efficiency exceeds 0.8, in the second case the maximum falls below 0.6 and decreases
rapidly for even higher reduced frequencies. The figure is the most important one of the paper with respect to animal
flight and illustrates that the propulsion of animals is an inherent and basis property of the theory of unsteady aerodynamics.
For any reduced frequency, animal flight is restricted to certain well defined and narrow areas of the governing parameters
representing a compromise between optimum efficiency and the necessary propulsion to overcome the unavoidable frictional
drag. In Figures 8a—c the power coefficients for the three degrees of freedom g, h and o are plotted. Maximum efficiency
is very close to vanishing propulsion; i.e., the less friction to be overcome by propulsion, the more efficient the mechanism
of propulsion is. The disadvantage of low reduced frequencies is that animals operating in this regime have to be optimized
perfectly for low drag or they waste too much of their input energy in comparison to animals operating at higher reduced
frequencies, where the slope of decreasing efficiency is less steep than for a very low reduced frequency.



128 ZAMM - Z. angew. Math. Mech. 72 (1992) 2

15. .
> 0.8 3 L
Amplitude | 7
{ratio A
< 0.0
0. T T T 0. T T I
-90. Phase shift 270. -90. Phase shift 2 270.

Fig. 7. Efficiency 1 for two reduced frequencies w* = 0.2 (left)and w* = 1.0 (right); amplitude ratio 2 versus phase shift x
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Fig. 8a—c. Mean power coefficients for two reduced frequencies w* = 0.2 (left) and w* = 1.0 (right) and for amplitude
ratio A versus phase shift »; {cy ,> (top), {c,> and {c¢j; ,>(bottom)
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Recent preliminary comparisons between the theoretical description presented in this paper and results from
W. Zarnack’s observation of the kinematics of insects ([20], [21]) seem to indicate that the lines of zero {cj; > and {c; ,»
play an important role. At least the animals observed, Locusta migratoria L., tend to have phase shifts x, ¢ and amplitude
ratios /, T very close to these lines. The basic relations of possible relevance for a detailed interpretation of animal flight
are illustrated in Fig. 9. For the very typical values 2 = 12, t = 6, and w* = 0.2 the contour plots of {cj > and {cj; ,»
for o versus » show that the zero-lines intersect at distinct points (x,, 6,) in the centre of the figure coinciding very closely
with the observations. The preceding example also demonstrates the capability of the theoretical approach to represent
complex features in animal flight.

= 0.1270. E 270. -
Phase =
shift ¢
Fet=0..]
B < _0'1_90. . -90. - j G | i
-90. Phase shift 270. -90. Phase 2, scale#100 270.

Fig. 9. Mean power coefficients {¢j; ,» (left)and {c; ,» (right) for o* = 0.2, = 12and t = 6; phase shift ¢ versus phase shift »

9. Computation for three-dimensional kinematics

Excluding the uniform rotation preferably applied in approximative computations of unsteady pressures for rotary wings
and omitting the offset y, for the hinge (Fig. 5), the transformation

E;'k = E;(S([), (p(t)s OC([)) ¢ (88)

by the matrix E(t) for 3D kinematics according to Table 5 reads explicitly:

ef cosa 0 —sino cosp sing 0 1 0 0 e,
ex | = 0 1 0 | —sing cos¢ O[] 0 cosd —sind e, (89)
e¥ sine 0 cosa 0 0 1 0 sind cosd ey
The matrix
[cos @ cosor —sin §sin o + cos 9sin ¢ cosx  —cos §sin o — sin 9 sin ¢ cos o
E(3(t), o(t), a(t) = —sin ¢ cos J cos ¢ —sin 3 cos ¢ (90)
cos ¢sina  sindcosa + cos I sin ¢ sin o cos & cos o — sin 9 sin ¢ sin o
leads to
[ ¢ —o® ©® w? —9cos ¢ cosa — ¢sina
Q) (1), a(t) =| 0 —o'| with |0?|= 9sing + a . (91)
L——wz w? 0 ? — 9 cos ¢ sina + ¢ cos
Including the pitch axis x, as in Chapter 6 the kinematic velocity field is:
vl (x** 1) . gcos0cos @ + x*2cos o — Jx*? sinocos @ — ax*® — Jx*3 sin ¢
vR2(x* ) | = | —@[(x* — xp)cosa + x*3sina] + J[(x*! — xp)cos @ sina — x**cospcosa] |. (92)
v (x**, 1) gsinocos ¢ + ¢x*2sina 4+ 9x*2 cosacos @ + d(x*! — xp) + §(x*' — xp)sin @

The nonzero vj? indicates the presence of centrifugal forces caused by flapping (J) and lagging (¢) motion. Linearizing
9(t) and ¢(t) according to Eq. (25) and analogously to Eq. (53) it is obtained for the normal component of v,

v = (sin og - COS g + o; - COS oLg * COS g — @; * Sin vg * Sin Qg) &
+ sinog - ¢ - x*2 + cos oig - €OS Pg * § - x*2 + a(x*! — xp) + 3+ (x*! — xp)sin 5. (93)

9 Z.angew. Math. Mech., Bd. 72, H. 2
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For ¢g = 0° the expressions for v} in Eq. (93) and v} in Eq. (71) show almost complete conformity. The local 3 - x*2
corresponds to /1 and ¢ - x*? corresponds to s. Hence, the 3D case is very reasonably approximated by the 2D coefficients
of forces and moments and a spanwise integration of x*?2, the local amplitudes being h, = x*? tan §, and s, = x*? tan ¢,
(strip theory). The case ¢g # 0° is treated similarly leading to sightly different definitions of the ratios 4 and t compared
to Eq. (73). With b being the span of the (rectangular) 3D wing, the ratios are

$o b2 . , 99 b/2
T = *sinog and  A:=
oo - 12 oo - 12

- COS Og * COS (P . (94)

The last summand in Eq. (93) and the term with ¢; belonging to ¢ require the definition of two further ratios y and 1

(.
3o . . .

7=—-sin pg and W= g, sin o -+ Sin Qg . (95)
%o %o

The various coefficients in the mean power coefficient for the 3D case

P
{ep) = P< >2 = Lna) + L} + e + {Cna)s (96)

0" %o

as defined in Egs. (79)— (82), change in the following manner: Introducing the coefficients

y R =1 A o
Cy,y = (i0*) ¢y, and EN,e* = CN,a — ENy > 97)

the last term with ¢y , in the force function Q(r) in Eq. (76) is replaced by

COS 05 COS PsCy , * COS (Wf + ¢y ,) + Cy ¢ - cos (ot + Py o) (97a)
and the function is extended by

Q(t) = ... + Fo - agxCy,¢ " COS (0t + ¢y ¢ + %) — Fo - aopCy,, - cos (@t + Py, + 0). (98)

The moment function M(t) in Eq. (77) is treated in the same way replacing all subscripts N simultaneously by M.
Explicitly altered are the first and the last power function in Eq. (75)

P,(t) = [sin og cos ¢pg + 0y(COSs tg * COS (g - cos wt — 1 cos (wt + )] - ugy - O(t),

P() = + [% upw* - (sin wt + x - cos (@t + ) M(D),

leading in Eq. (96) to expressions similar to Egs. (79)— (82).

10. Concluding remarks

The present paper outlines the basic and inherent properties of the theory of unsteady aerodynamics with respect to flutter
and propulsion, using the balance of mechanical energy as the guiding principle. Both mechanisms are explained as
complementary processes depending on the various parameters of the kinematic motion and particularly on the reduced
frequency as the governing magnitude with respect to unsteady effects. Camber and thickness may improve the efficiency
of propulsion, but they are not a prerequisite for propulsion to take place. However, all equations for forces and moments
are derived such that both tools for improving the thin plate theory can easily be included. Though the two-dimensional
theory already comprises a complete model for flutter and propulsion, the theory is also capable of including
three-dimensional effects and spatial configurations like engine nacelles, the author’s current subject of research.

It is beyond the scope of the paper to compare the theory with the numerous measurements within the decades
following Katzmayr’s very first experiment in unsteady aerodynamics. The experiments and measurements of E. voN HoLST
and D. KUCHEMANN with mechanical models of flying animals ([22]—[24]) are not to be explained on the basis of their
quasi-steady theory. In [23], p. 282, they write:

The given force coefficients ¢,, ¢,, and ¢ (in a preceding table) have not been obtained from the quasi-steady theory, but have been taken
from the conditions of equilibrium for the steady climbing flight and from the power of the engine (twisted-rubber engine), assuming an
estimated efficiency 5 of 0.5 due to losses in the gear box etc.

A careful check has proved that von Holst’s model does not only fly in reality but also on the basis of the theory in this
paper, the reduced frequency being w* ~ 0.4. Various other experiments prove the capability of the theory for explaining
the significant measurements of animal flight, particularly the very detailed observations of W. ZARNACK ([25]. [26]) on
locust flight within the last two decades. The wings of insects very much resemble thin plates, the shape remaining almost
unaltered during flight and thus providing a very suitable subject for comparison with simple theoretical models.
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Appendix A

Normal force and moment coefficients of the plunging and pitching thin plate (2D):

ey n(@*) = 21 - [iw*C(w*) — + *?], Ty
Car (@, EP) = ey (@, ) "l'7 (&p — 1 - e p(@*) with i
enan(@*,3) = =21 [— Fo*?],

N (0%, Ep) = ey J@*, §) — 2(Ep — 2) - ey u(@*)  with -

1 i 1 )
gN.:(‘U*» Z) =2n-: |:C((u*) 8t GOF) + ) w* — 5 U)*-:|,

9*
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5 1 B 1 ; 1 1 B 1\?
Cur (0%, Cp) = £M.z<(’)*s Z) -2 <§P - Z) “Cyr (@™, 1/4) + <‘§P == Z) ’ QN.;<(’)*- Z) &= 2+ <€1’ = Z) “en (%),
1k 5 i % 3 5
Crmo OF,— | = —2n | — 0* — — w** |,
e 4 4 32

H{? (w*)
HP(0*) + i HP(0*)

(A4)

Clw*) = (AS5)

The function C(w*) is called Theodorsen’s function, where H!* is the Hankel function of order v [27]. Approximations of the
function C(w*) by simple algebraic expressions are discussed in [28], p. 215.
KUssNER’s coefficients k,, k, and m,, m, in [6], Eq. 42, are related to the preceding functions by

= T
.CN_I,((U*) =" ku > gM.h((u}Fw 1/4) = - 7 Tmg,

(A6)

ey (0% 1/4) =7k, Car (0% 1/4) = — ;wn,, ]

Changing the pitch axis from an arbitrary xp, to another xp, leads to the additional term —d(yp, — xp;) in Eq. (71), to be
interpreted as an additional “plunging motion™ hp(t) = hgp cos (wt + pp) with the amplitude hop = oy(Xp, — Xp;) and the phase
shift yp = 7. Selecting xp,/l = 1/4 and &p = xp,/l and including the additional term hp(t) the recalculation of normal force and
moment coefficients leads to Egs. (A1)— (A4).

Appendix B

Recently published results from unsteady pressure measurements [29] demand further theoretical investigations of nonlinear contributions
to mean forces. Basically, the nonlinear terms of Bernoulli’s equation in Eq. (31) could interpret the observed drag reduction for a plunging
motion. However, the measured effect converts for a slight increase of the steady angle of incidence og (g > 5°) to a drastic increase in
mean drag being unpredictable within the theoretical limits. Furthermore, the assumed linear vorticity transport in the theoretical model
does not convect changes of the energy balance at the profile (from included nonlinear terms) into the fluid, if these do not originate
from the solution of the corresponding integral equation.



